

PUMPED-UP WALPOLE - ENERGY STORAGE Challenges for Grid Connection and Power Quality

DINGO FLATS ROAD WALPOLE

EESA and Engineers Australia – SEPTEMBER 2023

project is supported by Government of **Western Australia** Department of **Water and Environmental Regulation**

CLEAN ENERGY FUTURE FUND

RATIONALE

Q1 - WHAT is ELECTRICITY MARKET - 30 YEARS IN FUTURE?

- A Mix of mainly intermittent generation plus:
 - smart grids & DSM (rational economics, may dominate, takes time)
 - distributed energy & storage (discretionary and mostly sentiment)
 - bulk storage 1 to 20 hours (rational economics)
 - fully digital

Q2 - HOW to DELIVER NOW?

- A Economic bulk storage to 20 hours:
 - Eliminate constraints (100m elevation, farm dams, unlimited locations)
 - Incremental like wind turbines and PV, not niche
 - Economic = storage \$ + PV/wind + network < black power \$ + network
 - Template for streamlined grid connection
 - Futureproof, fast to deploy and scalable

2. Some critical factors

BACKGROUND

- Triggered by NEM case
- Energy markets are in transition - mixed signals
- Accelerate transition

DEMONSTRATE at WALPOLE

then:

- Enable mass production
- ➤ Streamline operation
- Systematic deployment
- Demand-driven rollout

- 1. Pumped-Up Walpole
 - Functions
 - Arrangement

2. Challenges and solutions

- Power quality
- Wide area networking
- Resilience & flexibility
- Capital efficiency

3. Questions

125 kilometre distribution line through karri forests, storms and bushfires Western Power and PRD joint **renewable microgrid** project will significantly improve power **reliability for Walpole**

Awarded \$2 million as part of the WA Government's Clean Energy Future Fund "This project, despite being on a **smaller scale**, will be used as a **template** for other areas in the State, and possibly nationally and internationally."

Bill Johnston - WA Minister for Energy

WALPOLE FUNCTIONS

- Network Control Services reliability
- Assigned Reserve Capacity
- WEM wholesale energy trading
- Embedded solar PV
- Retail bulk energy storage service

OTHER CAPABILITIES

- Network Control Services voltage support, peak lopping and demand management
- EV supercharging hub
- Ancillary Services

LONG-TERM STORAGE

- 1.5MW
- 20 hours hydro capacity

PATENTED SYSTEM

- Microgrid enabled (grid forming) - Walpole average demand is 400kW
- Fully inverter connected
- 15 min integrated battery
- Sophisticated automation
- Instant and bumpless transitions

Two farm dams, 170ML and 2ha each 85m elevation difference 30MWh storage capacity 1.5MW of floating PV

1. Pumped-Up Walpole

800m buried penstock GRP pipe 1000mm average dia 2500 litres per second 9 km/h

Connected 14km NE of Walpole

- 22kV distribution connection
- Visual simplicity by choice
- Standard regulated connection
 - Technical rules
 - Compliance

Edge of grid

- 125 km line, forests, SWER spurs
- 5 x voltage regulators
- Low fault currents:
 - 3 phase is 149 amps at 22kV
 - L-G is **119** amps
 - L-L is 74 amps

CHALLENGES AND SOLUTIONS

NETWORK CONTROL SERVICES

- Developed with Western Power
- Standby power to township:
 - Bumpless load acceptance (without breaking waveform)
 - 125 millisecond fault clearing
 - Long duration microgrid capable
 - Bumpless resynchronising and power transfer
 - Black-start capable
 - Interface with WP
 - Discrete from connection systems
 - NCS protection, power and sensing
 - Integrated battery 1200kW for 15 min
 - Minimum NCS storage reserve

POWER QUALITY:

- Local voltage stability

- ➤ Active VAR compensation
- ➤ Passive VAR compensation (backup)
- Conditional constraints mapping

- Maximise embedded PV Bi-directional governing
PV runback

WALPOLE TOWNSHIP

- 1. Upstream fault
- 2. Droop(set 0) response (inst.) supports local volts
- 3. Detect fault (10-50 ms)
 - a. Trip NCS
 - b. Select Droop(set 1)
 - c. Stop pump
- 4. NCS opens (+65 ms)
- 5. Grid inverter Droop(set 1) matches demand (inst.)
- 6. Regulating battery is DC slack bus (inst.)
- 7. Generator maintains battery SoC (at leisure)

Recalc Droop(1) with ongoing compensation

- Bumpless transition
- Stable microgrid
- ➤ Regulating battery
- ➤ Compositional control architecture
- Pro-active governing and control
- ➤ Critical fault clearing time

WIDE AREA NETWORKING

- Anti-islanding

> Synchrophasor to Albany

- Load sharing

- ➤ Compensated droop
- Multiple locations

- Remote synchronising ≻ Local NCS i
- Local NCS relay(s) can be multiple
 - ➤ Time insensitive logic
 - ➤ Satellite clock synchronising

2. Challenges and solutions

RESILIENCE & FLEXIBILITY:

- Existing protection selectivity
- ➤ 3.25 pu fault current contribution
- ➤ Microgrid only

- Failsafe

- ➤ Compositional control architecture
- ➤ Eliminate control risk
- ➤ Backup protection
- 2. Challenges and solutions

CAPITAL EFFICIENCY

Capital efficiency **before** operating efficiency:

Fixed revenue > fixed costs

Variable revenue > variable costs

All technologies must compete

Some of our efficiencies are:

- 1. Mass producible components, deployable at scale
- 2. Distribution connected, latent infrastructure capacity
- 3. 100% energy efficient service 65% operating cycle efficiency, plus 35% priming power solar PV
- 4. Fixed revenue optimised = NCS services, AEMO capacity market, green certificates, fixed retail services
- 5. Variable revenue is zero (or negative) marginal cost

FUNCTIONS	Us	BTM BESS	Community BESS	Utility BESS	Utility PHES	Smart Grids
Bumpless/instant (local)	\checkmark	\checkmark	\checkmark			\checkmark
100ms (local)	\checkmark	\checkmark	\checkmark			\checkmark
100ms (grid-wide)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
1-5 sec	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1 hr	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5-7 hr	\checkmark	\checkmark			\checkmark	\checkmark
Weeks	\checkmark				\checkmark	

QUESTIONS ARE WELCOME

3. Questions