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ABSTRACT 

The increase in decentralised generation and the massive 

expansion of e-mobility are causing short-term load and 

generation peaks in the distribution grid. To prevent these 

power peaks from overloading operating equipment, the 

flexQgrid project is testing automated congestion 

management. This congestion management is based on 

forecasts of the future grid status generated by building 

energy management systems and an external provider. 

INTRODUCTION 

The low voltage grid faces new challenges due to further 

increase in renewable decentralized power generation and 

flexible consumption units such as private charging 

infrastructure for electric vehicles in low voltage grids. 

The simultaneity of charging processes is a widely 

discussed topic. However, considering current funding 

programs and the following strong increase of installed 

charging stations, even a lower simultaneity of charging 

processes can cause grid congestions. To avoid these 

situations, charging stations requiring approval can be 

rejected in the future if the number of charging stations is 

already too high in the considered grid cluster.  In order to 

enable the energy transition and a quick and secure 

integration of the requested number of charging stations 

into the grid of the future, new concepts for the 

coordination of flexibilities to avoid grid congestions are 

required. 

 

The approach tested in the federally funded project 

flexQgrid uses quotas at the grid connection point of 

buildings and plant sites to avoid predicted congestion as 

well as to optimise the utilisation of the existing grid and 

the individual preferences of customers. The operation of 

charging stations for electric vehicles, heat pumps, 

photovoltaics and battery storages within households is 

optimised and coordinated by building energy 

management systems (BEMS). Each BEMS can react 

differently in situations of a predicted congestion and 

adapt its planned operation schedules – for example 

throttling the charging power of the electric vehicle or 

shifting the charging times. 

FORECASTING PROCEDURE AND 

TECHNOLOGY 

To reliably detect future congestion, forecasts of the power 

at the critical equipment (transformers and line feeders) are 

required. The load on the grid is calculated in quarter-

hourly time increments. Accordingly, the forecasts are also 

required in a resolution of 15 minutes. [1] 

In the previous project grid-control, forecasts based on 

standard load profiles and forecasts based on measured 

values were tested [2]. As load curves of prosumer 

households, especially with a high degree of flexibility, are 

highly individual due to the influence of the BEMS, the 

forecast models used in flexQgrid are based on measured 

values. 

Furthermore, a distinction must be made in the forecasts 

between flexible and inflexible power. The distinction is 

needed to be able to decide on the extent to which the 

flexibilities can be used to avoid a potential congestion. [1] 

The load of a household equipped with an intelligent 

BEMS is expected to be predicted with higher accuracy if 

the forecast is made by the BEMS instead of an external 

party for two main reasons: Since the BEMS knows the 

technical characteristics of all installed flexible 

consumption units and has direct communication access to 

these units, it can differentiate between the measurements 

of inflexible and flexible load. Moreover, it only needs to 

predict the household’s inflexible load, because it controls 

the operation of all flexible units. The BEMS’ forecast 

models are described in the next section. 

 

In the case of inflexible households (without BEMS), an 

external system needs to generate the required load 

forecasts. These forecasts of inflexible power are 

aggregated forecasts at the critical equipment to 

economise measurement technology. 

 

The measurements from the flexible households are 

aggregated and subtracted from the total measurement at 

the critical equipment. The result is the inflexible power at 

the equipment, which serves as the basis for forecasting 

the inflexible power. The forecast of the flexible power at 

the resource is composed of the aggregation of the 

individual household forecasts of the flexible households. 
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Since forecasts of medium and high voltage transformers 

are already in use, the aggregate forecast uses existing 

technology. At Netze BW, the forecasts are currently 

requested by the NETZlive initiative and generated by 

EnBW Datalab. For the low-voltage forecasts, the existing 

forecast models are used and have been checked for their 

transferability. This subset of low voltage forecasts is 

therefore called flexQgrid objects in the following. 

Contrary to that, household forecasts are not yet in use and 

were developed for the project by the project partner FZI. 

Forecasting procedure for flexible prosumer 

household 

The fundamental task of a building energy management 

system is the optimised operation of controllable 

generation, consumption and storage units within a 

building. While minimisation of overall operation cost 

presents the most common target [3], other goals such as 

minimum greenhouse gas emissions can be defined. As 

optimisation is conducted for future periods, any 

parameter of the optimisation problem that depends on 

external factors, such as PV generation, the presence and 

state of charge of the electric vehicle or a household's 

general consumption (lights, dishwasher, TV, etc.), needs 

to be predicted. 

The BEMS in flexQgrid employs four different forecast 

models to predict the PV generation, inflexible load and 

availability (connection state) of the electric vehicle (EV). 

The individual models are described in the following, 

starting with the inflexible load forecast.  

 

Load of inflexible consumption 

The BEMS’ optimisation model requires a forecast of the 

active power consumption in the household that cannot be 

controlled. It is termed inflexible load in the following. The 

load of electric vehicle charging, for instance, is not 

included because the charging process is controlled by the 

BEMS.  

To develop the load forecast model, the data set provided 

by the HTW Berlin comprising (synthetic) load data of 74 

single-family homes [7] was used for training and 

evaluation. Load data from the buildings participating in 

the field test has not been available when developing the 

forecast models. 

The inflexible load within each household is predicted 

using a reference-based model. A forecast may span up to 

24 hours with 1 minute resolution and the reference data 

consists of inflexible load measurements from the past 30 

days. The reference-based model works as follows: From 

the reference data, three different daily load curves are 

generated. They are based on the average values of all 30 

days, of the previous 7 days and of the days with the same 

day of week as the predicted days, respectively. The final 

load curve – the forecast – then results from simply taking 

the mean of these three load curves. 

Besides the reference-based approach, a neural network 

(NN) model has been developed. Its features consist of the 

inflexible load measurements of the previous day, the day 

of week and the hour of the day. As load data from the 

households participating in the field test has not been 

available for training, the model, when deployed, is faced 

with load data from a previously unseen household. 

Accordingly, the testing data set did not include any 

households from the training data set. A more detailed 

description of the model and its variants is beyond the 

scope of this paper. Overall, the performance of the 

reference-based model was slightly better than the one of 

the NN models in terms of MRE (3.17% vs. 3.44%, mean 

of all tested household data sets). For this reason and the 

requirement for a model that can work with previously 

unseen data, the reference-based model was chosen for 

application in the BEMS for the field test.  

 

Electric vehicle connection state 

In flexQgrid, the BEMS has total control of the charging 

processes at the households’ charging station, i.e., it starts 

and stops the process and sets the charging current. In 

order to know when the electric vehicle will be available 

and in need for charging, the BEMS predicts at which time 

periods the electric vehicle is connected to the charging 

station. The battery's state of charge (SOC) cannot be 

predicted due to a lack of corresponding data, because 

charging stations operating with alternating current (AC) 

are not able to communicate SOC values. Since all 

charging stations used in the project’s field test use AC, 

forecasting the vehicle's SOC is out of scope for the 

project. 

In general, the prediction is made using the same 

reference-based model as for the inflexible load forecast. 

Instead of active power measurements, the reference data 

consists of the connection state which is permanently 

requested from the charging station and stored in the 

BEMS’ database. The connection state is a binary value, 

with connected=1 being defined as "the charging cable is 

plugged into the vehicle and the charging station, and the 

charging process is authorized". Any other state translates 

to connected=0 (“unconnected” or “absent”). 

However, there are two cases where the reference-based 

model is not exclusively applied. If the vehicle gets 

connected to the charging station, the BEMS notices the 

change of the connection state and triggers a new forecast 

as prerequisite for the optimization of all device schedules, 

including an EV charging schedule. In this case, first, the 

average continuous duration of the state of connection and 

of absence is calculated, respectively, based on all 

available data from the last six months. Secondly, the 

vehicle is predicted to stay connected for the resulting 

average number of hours, then to be unconnected for the 

corresponding average duration. Only the remaining 

periods of the forecast horizon, if any, are predicted by the 

mentioned reference-based model. Otherwise, the model 

may predict “unconnected” for the upcoming time period 

based on the historical data and the EV would not be 

charged.  The second case concerns the disconnection of 

the vehicle from the charging station during an active 

charging process. In this case, the vehicle is assumed to 
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stay unconnected for the corresponding average duration 

and the remainder of the forecast horizon is again predicted 

by the reference-based model. 
In the project, field test participants are provided with a 

simple BEMS user interface and are asked to enter their 

planned departure time when connecting their vehicle to the 

charging station. If a user enters their planned departure time, 

this information is used instead of the average connection 

duration. 

 

PV active power generation 

For the prediction of the PV active power generation two 

models have been developed: a short-term model and a 24-

hour model. The short-term model is used every hour to 

predict the active power for the following hour with a lead 

time of only five minutes, whereas the forecast of the 24-

hour model spans 24 hours and further has temporal 

characteristics that are specific to the requirements of the 

quota system realized in the project flexQgrid The main 

motivation for the additional short-term model is the 

ability to update the PV generation forecast frequently, 

with focus on the next few time periods, and consider the 

latest PV measurements as well as weather forecast data. 

Both models are feed-forward neural networks with two 

hidden layers. The feature vector comprises the following 

parts: PV active power measurements normalized by 

nominal power and the hourly forecast of the sunshine 

duration from the three weather stations with minimum 

distance to the field test location (Freiamt), over 1 hour 

(short-term model) and 24 hours, respectively. The short-

term model additionally takes the hour of the day as input. 

The PV measurements used for training originate from 

data recorded in 2017/2018 during the predecessor project 

grid-control in four participating prosumer households. 

The sunshine duration forecast is provided by the German 

Weather Service (Deutscher Wetterdienst (DWD)) [4]. 

The sun duration was chosen as a feature instead of sun 

radiation or irradiance because the latter parameters are not 

available for all the three weather stations close to Freiamt, 

especially not for the one with least proximity.  

The features described above result from training and 

testing models with different variations regarding the 

number of hours of PV measurements to include (1-3 hours 

(short-term model) / 1-4 days (24h model)) and how to 

input the sunshine duration forecast (only from closest 

station, unweighted average of the three closest stations or 

weighted by distance to Freiamt, direct input of the three 

forecasts (chosen)). The resulting best models yield an 

MRE of 7.29% (24h model) and 7.52% 
 (short-term model) on the test set. Accordingly, these 

models perform better than their respective baseline 

models, a persistence forecast, with an MRE of 16.26% 

(24h model) and 8.64% (short-term model).  

 

The performances of all the forecast models described in 

this section remain to be evaluated during the field test. 

 

Aggregated forecasting procedure inflexible 

power 

The aggregated forecasts of inflexible power at the critical 

equipment as well as additional PV-generators are 

calculated by custom forecasting libraries running on the 

EnBW DataLab platform. 

Day-ahead and intraday forecasts are generated on demand 

for an arbitrary amount of measured grid objects (currently 

around 1000), including transformers and a variety of 

renewable energy generators. However, the power flows 

in flexQgrid objects are orders of magnitude smaller scale 

than their equivalents in NETZlive: By a factor of around 

125 for transformers/substations and a factor of roughly 12 

for photovoltaic power plants. Since all applied machine 

learning algorithms are invariant to scale this does not pose 

a fundamental technical problem. Yet the lower level of 

aggregation of individual power consumers/producers can 

be expected to make these objects harder to predict which 

in turn could influence the best choice of model 

hyperparameters. 

For both substation and photovoltaic generators recent 

measurements are included as explaining variables in the 

model. The photovoltaic generator forecast additionally 

uses forecasts for local weather conditions such as direct 

and diffuse radiation (i.e., sunshine) and the local 

temperature provided by the DWD [3] as well as 

information about the time of the day. 

The substation power flows are an aggregate of 

heterogenous generators and consumers and allow a larger 

variety of patterns. Therefore, they are provided with more 

input variables, including a superset of weather variables 

including precipitation, and windspeeds, and a detailed 

encoding of calendar information such as seasons, 

weekdays, and local holidays. Furthermore, standard and 

temperature dependent load profiles are calculated based 

on their definitions by the BDEW [5] and local weather 

forecasts and included in the set of explanatory variables. 

Based on experience and empirical performance in 

backtesting trials, further variables have been derived from 

the mentioned inputs (‘feature engineering’) for both the 

substation and the generator model. 

For a large set of heterogenous transformers one 

forecasting procedure is used. Therefore, the relevant 

subset of input information is not known for individual 

grid objects. Also, there is no general reliable prior 

knowledge on the functional relation between input and 

target variable. For photovoltaic stations the most relevant 

input variables are known, so that production can always 

be expected to increase with global radiation. However, 

even in that case, the mapping from input to output is 

partially unknown due to inaccurate metadata such as 

orientation and roof inclination and other local conditions. 

Last, relying on the availability of recent measurements at 

prediction time is not always possible. This may be due to 

delays in the delivery of measurement values that can be 

caused by failure of IT components. A different reason for 

missing recent data is classification as implausible or an 
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outlier by the forecasting library. 

 

Gradient boosting algorithms have the advantages of being 

robust with respect to irrelevant input variables and 

completely flexible with respect to the functional form. 

Recent implementations are highly efficient both in terms 

of algorithmic complexity and memory usage. [6]  

As availability of 100% reliable measurements with zero 

latency is not given, the general definition of the forecast 

horizon is altered for direct multi-step modeling. The 

implemented forecast horizon is defined as the difference 

between the most recent measurement and the timestamp 

to be predicted. Forecasting the next 24 hours requires 

models covering the horizons [t +1, t + 2, …, t + 24 * 4], 

where each step corresponds to the applied measurement 

frequency of 15 min. However, measurements can arrive 

with an arbitrary time delay. Therefore, the forecasting 

horizons covered by the machine learning models hast to 

be extended to [t +1, t + 2, …, t + 24 * 4, …, t + 24 * 4 + 

delay].  

Including a trivial model for long horizons that only 

depends on calendar data such as the time of the day or the 

weekday ensures the reliable return of a basic plausible 

forecast, irrespective of the health of data ingestion 

pipelines.  

The models for different horizons can be trained 

independently in parallel. An alternative recursive 

approach was clearly outperformed by the direct modeling 

strategy, such that the increased forecast accuracy 

outweighed the increased computational demand to train 

one model for each horizon instead of a single model [8].  

 

The machine learning algorithms come along with a large 

set of hyperparameters specifying the algorithmic details 

of how the relation between input and output is learned. A 

random-search algorithm was applied over a large set of 

hyperparameter-candidates on all transformers and 

generators of the NETZlive project and selected those that 

maximize average prediction accuracy in backtesting runs. 

To prevent overfitting, an early stopping criterion is 

applied: Model training will stop, once further model 

refinements do not increase accuracy on an isolated subset 

of the data (the ‘validation set’). The machine learning 

models are kept up to date by a fully automated process 

that triggers a retraining on a weekly basis. Forecasts and 

measurements, as well as forecast accuracy metrics and 

detailed information from the model training process are 

easily accessible in a custom dashboard, allowing for 

quick response times in case of unexpected behavior or 

poor forecast quality. 

Figure 1 shows the distribution of absolute normalized 

forecast errors grouped by forecast horizon and object 

type. Normalization is achieved by dividing the absolute 

error by the object’s maximum capacity. Since the forecast 

horizon is closely correlated with the time of day, the 

errors were normalized via mean shift such that each time 

of day has the same average absolute forecast error. This 

allows to decouple the effect of forecast horizon from the 

effect of time of day. Two generators and two substations 

are forecasted, as indicated by the color coding. The 

bottom row shows the number of observations for each 

horizon and object. A bimodal distribution is observed for 

all stations: Most of the forecasts have a horizon of 3 to 6 

hours, but there is another peak for the range of 24 to 48 

hours which is possibly caused by technical issues of data 

delivery in the initial project phase. The boxplots show the 

distribution of the normalized absolute error which is 

defined as the absolute value of the difference between 

forecast and measurement divided by the capacity of the 

object. There is no strong trend in the quality of 

photovoltaic generator predictions, except for the outliers 

in the sparsely populated categories of >= 12 hours and >= 

336 hours. Note that the forecast horizon is defined by the 

availability of recent measurements. Earlier analyses have 

shown that the relevance of recent measurements for 

photovoltaic forecasts decreases quickly and tends to zero 

after a horizon of roughly 60 minutes. For longer horizons 

few additional information was found that is not already 

contained in the weather data. For substations the forecast 

error clearly increases in the forecast horizon. 

Plans for future developments include a refined algorithm 

for the detection of structural breaks, that occur when the 

load attached to a subnet changes significantly. Besides, 

the potential of allowing for different hyperparameters for 

different forecast horizons or for distinct groups of 

transformers will be investigated. 

FIELD TEST OF PROJECT FLEXQGRID 

To ensure a practical implementation, the forecasting 

procedure as well as the congestion management is tested 

in a field test in the southern Baden municipality of 

Freiamt. 

Figure 1 Forecast accuracy by forecast horizon 



 CIRED workshop on E-mobility and power distribution systems Porto, 2-3 June 2022 
 

Paper n° 1156 

 
 

CIRED 2022 Workshop  5/5 

The proactive avoidance of grid congestions is tested in 

three low voltage grids with a total of 23 participating 

households with flexible units. Depending on the 

household, these can include all or multiple flexible units 

such as a photovoltaic system, battery storage, heat pump 

or charging station for the electric vehicle. These units are 

forecasted, optimised, and controlled by BEMS.  

In total 22 electric vehicles participate in the field test 

divided between three low voltage grids and separate low-

voltage feeders. The share of electric vehicles to grid 

connection points in these feeders are between 7% and 

33%, latter share being more realistic in the future. There 

is even one large prosumer with several charging stations 

and a separate feeder. 

Measurements in the secondary substations and from 

smart meters in the households are used for the forecasting 

process. These measurements have a resolution of one 

minute. To be able to serve as a basis for the quarter-hourly 

forecasts, the quarter-hourly mean value of the 

measurements is formed in each case. 

 

As expected, the overall quality of the aggregated 

prognosis decreases when solar radiance occurs which can 

be seen in Figure 2a. It also shows that the quality of the 

forecast loses precision with increasing solar radiance. At 

the solar peak the error accounts for up to 40% of the 

power actually fed into the grid. The figure shows the MSE 

and RMSE by quarter-hourly values over a time span of 14 

days in January in one of the three tested low voltage grids.  

Most days the shape of the solar curve is predicted well, 

but the actual amount of power fed into the grid is 

mispredicted. Events like sudden shadowing of a large PV-

area for only a short time are difficult to predict which 

impacts the quality of the prognosis significantly. In figure 

2b this effect is visible shortly after 2 p.m. for a single day 

out of the considered time window from figure 2a. 

 

 

CONCLUSION 

Proven forecasting methods for critical equipment from 

medium and high voltage could be transferred to the 

application in low voltage. The first evaluations show that 

the power in substations can be predicted with sufficient 

accuracy. Together with the forecasts from the BEMS, this 

forms the basis for automated congestion management. 

Because the BEMS can predict the use of the respective 

electric vehicle better than an external system, electric 

vehicles can also be integrated into this solution. Thus, the 

introduced forecasts form the basis to intelligently 

integrate a large number of electric vehicles into the 

distribution grid. Congestion management and the 

associated forecasting and control of electric vehicles will 

be practically investigated in the field test. 
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