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ABSTRACT 

The number of electric vehicles on the roads is increasing, 

and the number of fast DC charging stations is following 

this trend. However, the advantages of DC electric vehicle 

charging stations (ECVS) in terms of efficiency and power 

output compared to their AC counterparts are 

accompanied with protection problems. To address these 

problems, a recurrent neural network-based fault 

detection method that can detect both solid and arc faults 

in EVCS is presented. 

INTRODUCTION 

We are witnessing global warming caused by greenhouse 
gases, a significant proportion of which are emitted by 
today’s fleet of vehicles with internal combustion engines. 
Road transport in the European Union is responsible for 
72% of the total CO2 emissions from the transport sector, 
of which 60.7% are caused by cars [1]. Replacing the car 
fleet with electric-powered, zero-emission cars is seen as a 
step towards a 90% reduction in transport-related 
greenhouse gas emissions by 2050 as part of the climate-
neutral targets of the European Green Deal [2]. Such 
transition requires extensive development of the 
supporting infrastructure, which in the case of battery-
powered electric vehicles (BEVs) are the network of 
charging stations. Availability of chargers, continuity of 
supply and charging speed are parameters to be maximized 
to increase the convenience for BEV users [3]. To reduce 
charging time while increasing efficiency, fast DC 
charging stations are widely used. However, the DC 
systems are characterized by faster transients, and, unlike 
the AC systems, there is no natural zero crossing of the 
voltage, which complicates the DC system protection. 
Therefore, fault detection should be fast enough to detect 
faults before the current reaches a high magnitude. In 
addition, the fault response could resemble a sudden load 
change, which further complicates fault detection. 

RELATED WORK AND CONTRIBUTION 

The protection of charging stations has been addressed in 
several international standards, such as IEC 61851-
23:2014, which presents guidelines for overvoltage and 
short-circuit faults. Researchers have also presented 
approaches to charging station protection based on 
overcurrent, over/undervoltage and over/underfrequency 
protection schemes [4]. In recent years, the research focus 
has shifted to digital signal processing and intelligent 
classification methods because of their ability to 
distinguish between events with high accuracy even in a 
complex microgrid environment [5]. For example, an 

EVCS fault detection method based on the wavelet 
transform is used to detect open-circuit faults of the 
inverter switching devices [6]. 
In contrast to solid, faults with varying and often nonlinear 
resistance also occur. This type of faults, called arc faults, 
is often caused by the loss of a connection, an insulation 
fault, a cut wire, a defective connector, and other causes 
[7]. Arc faults can be significant and therefore easily 
detected, but they can also be very low and not so easily 
detected, depending on the cause of the fault and whether 
it is a series or parallel fault [8]. In addition, the current 
waveform is unusual and strongly depends on the length 
of the gap and the environmental conditions. Therefore, 
different approaches have been developed to detect arc 
faults. The most popular approach is to extract current and 
voltage fault features using signal processing methods. 
Recently, a method based on mathematical morphology 
has been proposed [9], but there are also somewhat less 
complex methods based on Fourier and wavelet transforms  
[10]. A machine-learning-based model of nonlinear 
dependencies between the features and the operating state 
was also used for  arc detection [11]. In [12], a machine 
learning approach to arc fault detection is discussed with a 
focus on the feature selection. 
Methods for microgrid fault detection based on digital 
signal processing and intelligent classification have 
already been proposed by different authors [13]. Among 
other intelligent classifiers, a recurrent neural-network-
based fault detection method for a DC microgrid was 
proposed in [14]. The method, based on a recurrent neural 
network (RNN) classifier, proved accurate for fault 
detection and location, including pole-to-pole and pole-to-
ground faults. The observed microgrid included 
photovoltaic and a battery storage systems, which respond 
differently to the faults, which was used to determine the 
fault location. However, the method should be extended in 
case there are loads/sources with the same fault response. 
An electric vehicle charging station meets these 
requirements as it contains loads with similar 
characteristics. These loads are also active, which makes 
fault detection even more difficult. However, the topology 
of a EVCS is similar to that of a microgrid, which makes 
the extension of the method less complicated. 
Furthermore, the faults that the method can detect are 
limited to solid, constant resistance faults. To further 
improve the method, detection of arc faults is being 
considered. 
The outcome of our work is the improvement of the 
microgrid fault detection method and its application to a 
charging station. The improved method uses more 
features, which affects the design of the classifier and the 
training process, but the basic framework of the method 
remains unchanged. The main contribution of the paper is 
an RNN-based method for fault detection in EVCS, which 
can also distinguish between the solid and arc faults. 
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FAULT SIMULATION SETUP 

Simulation setup 

Electric vehicle charging stations come in different 

topologies, namely: topologies with back-to-back 

AC/DC/DC converters, multiport stations with a common 

AC-link, and transformerless charging stations [15]. 

Topologies with back-to-back AC/DC/DC converters are 

characterized by their modularity, simple control, and high 

reliability. Generally, this type of EVCS is connected to 

the grid via a Yg/∆ voltage transformer and a voltage 

source converter (VSC). DC/DC converters are connected 

to the common bus, whose voltage is controlled by a VSC, 

and supply power to the vehicle. The described topology 

corresponds to a microgrid where all sources and loads are 

connected to a common bus, which facilitates the 

adaptation of the mentioned RNN-based fault detection 

method. Therefore, this EVCS topology is modelled 

according to the model presented in [16]. The simulation 

setup is shown in Fig. 1. The batteries representing the 

loads of the electric vehicle are charged from the DC/DC 

chargers operating in either constant current (CC) or 

constant voltage (CV) mode. The simulation setup was 

implemented in Matlab Simulink environment. To reduce 

the complexity of the model, two chargers with 

corresponding batteries were implemented, both active at 

the same time.  The faults are located between the charger 

and any of the two electric vehicle batteries. Cases where 

the batteries operate in the same, but also in different 

control modes are considered, as the fault behaviour may 

depend on the control scheme [17]. 

 
Fig. 1 Electric vehicle charging station model [16]. 

Faults 

Two types of faults are considered: pole-to-pole (PP) and 

arc faults. Pole-to-pole faults are characterised by a fast-

rising, high-magnitude current that easily results in 

equipment destruction. Arc faults, on the other hand, are 

variable in intensity and duration. Therefore, it is expected 

that arc faults are more difficult to detect, which poses a 

challenge to the existing fault detection (FD) methods. 

Before presenting the proposed FD method, PP and arc 

faults are described. 

 

Pole-to-pole fault 

Pole-to-pole fault behaviour is a well-studied topic in both 

the AC and DC systems. When two poles are short-

circuited, i.e., the fault impedance is very low, a fast-rising, 

high-magnitude current starts flowing. The devastating 

consequences of this fault can only be mitigated if the fault 

is detected and eliminated immediately. In case of a PP 

fault on the cable connecting the electric vehicle and the 

charger, the battery contributes significantly to the fault 

current [18]. 

The charging station fault contribution in the case of 

constant current charging is limited since the control 

manages to follow the current reference. However, if the 

voltage control is engaged and a fault occurs, the control 

will try to match the voltage reference, resulting in a high 

current, as in Fig. 2. In normal operating conditions, the 

current in the CV mode is lower than in the CC mode. A 

fault in Fig. 2 occurs at t=3 s. The low fault impedance 

leads to a high battery discharge current and consequently 

reduced battery voltage. If the current control mode is 

active during such event, the charger’s output current 

remains unaffected as the control is inherently not 

dependent on the output voltage. However, when the 

output voltage is controlled, the difference between the 

setpoint and the actual value is high, resulting in a high 

duty cycle of the converter switches and a high current. 

 

 
Fig. 2 Converter fault current for different control modes. 

In case when more than one battery is connected, the fault 

behaviour becomes more complex. If the charger is in the 

CC charging mode and a fault occurs, only its output 

voltage is affected. All other batteries are not affected by 

this fault. However, if the charger is in the CV mode when 

a fault occurs, its high current will discharge the DC 

capacitor and reduce the DC bus voltage. Consequently, 

all other batteries are also affected and contribute to the 

fault, regardless of their charger’s operating mode. 

 

Arc fault 

Arc faults are best described as faults with variable voltage 

and current, nonlinear resistance, and a portion of 

randomness. There are several approaches to modelling 

arc faults: i) numerical, where a 3D simulation model is 

used to investigate the arc behaviour [19], ii) empirical, 

where an arc voltage-current characteristic is formulated 

as a nonlinear equation that depends on the magnitude of 

the arc current and the gap [20], and iii) heuristic, where 
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fluctuations in gap voltage and current are modelled by 

choosing the random distance ratio between the gap width 

and the extinction width at which the arc is extinguished 

[21]. The accuracy of the latter approach was 

experimentally demonstrated for a series arc fault in a low-

voltage DC microgrid in [21]. The authors pointed out that 

the complexity of the model implementation is 

significantly reduced because the time-varying resistance 

replaces the necessary knowledge about the physical (or 

temporal) parameters of the arc. The said heuristic model 

was implemented in MATLAB Simulink environment for 

monitoring arc faults in photovoltaic systems, as a first 

step towards developing the FD algorithm [22]. The same 

procedure is used in this work, as the arc FD method is first 

tested on the simulated data. Before presenting the 

challenges of detecting arc faults using neural networks, 

the heuristic model used is briefly explained.  

Arc voltage is described by a sum of two nonlinear terms 

Vq and egap: 

𝑉𝑎𝑟𝑐 = 𝑉𝑞 + 𝑒𝑔𝑎𝑝  (1) 

𝑉𝑞 = 𝑉𝑑𝑐(0.5 + 0.5tanh(𝛼(𝑞 − 1))) (2) 

𝑒𝑔𝑎𝑝 = 0.5(𝑎 + 𝑏𝑥𝑔𝑎𝑝)(tanh(𝜆𝑞) − tanh(𝜆(𝑞 − 1)) (3) 

 

where a denotes gap electromotive force (EMF), b EMF 

slope, α slope of Vq, λ slope of egap, and q a random 

function. Arc current is given with: 

 

𝐼𝑎𝑟𝑐 = 𝐼𝑞 − 𝑗𝑔𝑎𝑝  (4) 

𝐼𝑞 = 𝐼𝑙𝑜𝑎𝑑(0.5 − 0.5tanh(𝛼(𝑞 − 1))) (5) 

𝑗𝑔𝑎𝑝 =
𝑒𝑔𝑎𝑝

𝑅𝑔𝑎𝑝 + 𝑅𝑙𝑜𝑎𝑑 + 𝑅𝑔

≈
𝑒𝑔𝑎𝑝𝐼𝑙𝑜𝑎𝑑

𝑉𝑑𝑐

 (6) 

 

where jgap can be neglected if the load resistance is high. 

Furthermore, parameter q, which denotes the ratio between 

the gap width (xgap) and arc extinction width (xextinction) is 

randomized to emulate the arc behaviour. It is given by: 

 

𝑞𝑡 = 𝑞𝑡−1 + 𝑐 ∗ 𝑟𝑎𝑛𝑑(0,1)𝑑  (7) 

 

The constants a, b, c, d, α, λ can be chosen according to 

[21], but are relaxed in this work according to [22] to 

represent a faster decay of the arc. As can be seen from (7), 

the value of q at time step t depends on its value at the 

previous time step and a random number whose interval is 

determined by constants c and d. This means there are no 

two identical arc fault signatures and determining whether 

a fault has occurred becomes difficult. 

The problem arises from the nature of the neural network 

attempting to model the unknown function. If the samples 

characterizing a particular event are random, the neural 

network may not find the pattern required for successful 

classification. In this specific problem, the randomness of 

the voltage and current measurements provided to the 

neural-network-based classifier could lead to a failure. 

Therefore, the neural network should be provided with 

additional features that contain more information about the 

fault. The waveform of the series arc observed in this paper 

can be seen in Fig. 3. The change in the voltage after a fault 

occurs at t=3 s is obvious. However, the randomness of the 

response becomes more visible when the temporal 

resolution is increased. 

 

 
Fig. 3 Charger output voltage after series arc fault. 

FAULT DETECTION METHOD 

An advantage of machine learning algorithms is the ability 

to construct complex dependencies from data. Deep 

learning models, a subset of machine learning models, are 

able to design features implicitly, relieving the user of 

difficult feature selection. However, user-defined features 

can be added if this contributes to the model accuracy. The 

fault detection method proposed in [14] used only the 

current and the voltage as inputs, but with the inclusion of 

arc faults this feature set should be expanded. 

Recurrent neural networks 

Recurrent neural networks can model an interdependence 

between the successive data samples and use this 

knowledge to produce the output, unlike classical neural 

networks that produce the output based only on the current 

inputs. How is this achieved can be seen by comparing the 

formulations of the hidden layer of a standard feed-

forward neural network (FFNN) with that of a recurrent 

neural network. Equation (8) shows how the hidden layer 

of an FFNN is obtained. The input is represented by xt, ht 

is the output of the hidden layer, and g arbitrary nonlinear 

function, usually tanh or rectified linear unit (ReLU). 

Matrices U and b are obtained after the classifiers’ 

training. 

𝒉𝑡 = 𝑔(𝑼𝒙𝑡 + 𝒃)   (8)  
A recurrent NN has an additional term in the hidden layer, 

as shown in Equation (9). 

𝒉𝑡 = 𝑔(𝑼𝒙𝑡 + 𝑾𝒉𝑡−1 + 𝒃)   (9) 

Here, the past state of the hidden layer is considered using 

the matrix W, which is also obtained during the training 

process. Now the output at each time step depends not only 

on the current input but also on the past states of the hidden 

layer. In addition, the RNN is free to decide how far into 



 CIRED workshop on E-mobility and power distribution systems Porto, 2-3 June 2022 
 

Paper n° 1342 

 
 

CIRED 2022 Workshop  4/5 

the past it wants to look, so that the user no longer has to 

determine the length of the time window. 

Method 

Since the EVCS contains two identical loads, determining 
which one is faulty requires independent measurements 
from each load. Current and voltage measurements at the 
output of the charger can be used for fault detection. These 
measurements are already available because the control 
system uses the same measurements for charging control. 
As already described, the faults affect the entire charging 
station or only one load, depending on the control mode of 
the faulty charger. Therefore, it is important that the 
measured values from all instances are available to the 
classifier. However, from the fault analysis, it appears that 
the charger’s output current remains unchanged in certain 
cases, but the voltage is affected in all considered cases. 
To minimize the number of classifier inputs it is sufficient 
to use only the voltage measurements at the charger output. 
A proper selection of features is required for the detection 
of arc faults. Since the arc fault is modelled as a random 
sequence, it is questionable whether the neural network 
used for classification can implicitly design the features. 
Therefore, additional features are proposed in [12]. The 
authors used the wavelet transform of the signal together 
with the moving average of the current as features for the 
classifier. This approach was used to address the noisy 
response problem of the arc fault. First, a suitable mother 
wavelet was selected, and then the decomposition level 
coefficients containing the information about the 
frequency spectrum of a signal were selected. The 
approximation coefficients represent the denoised original 
signal and the detail coefficients represent the high 
frequency components. The moving average helped 
tracking the arc current, which shows a negative trend after 
the occurrence of an arc fault. 
In this paper, the same procedure is used. The voltage 
signal is divided into segments with a length of 10 samples 
and the wavelet transform is applied. The obtained 
coefficients are then passed on to the RNN together with 
the mean value of the voltage segment. The same features 
are used for PP fault detection, as their occurrence is also 
visible as a change in the coefficient magnitude. An 
overview of the method is shown in Fig. 4. Approximation 
coefficients provide a stable, denoised signal that is easier 
to model. The RNN’s ability to model past the 
dependencies is less difficult when the signal does not 
change amplitude at high frequency. However, high 
frequency components are useful when sudden changes 
occur in the signal. This can be seen in Fig. 5, which shows 
the level 2 approximation and detail coefficients during PP 
fault. The approximation coefficient follows the falling 
voltage, but the increase in the magnitude of the detail 
coefficient shows that a sudden change in the signal has 
occurred. 
The neural network is trained on the dataset obtained from 
the simulation. The dataset was divided into the training 
and the test part in a ratio of 80/20%. Three classes can be 
distinguished: normal operating condition, PP fault and arc 
fault. 
 

 
Fig. 4 Method overview. 

 

 
Fig. 5 Level 2 coefficients during PP fault. 

The number of sequences per class can be found in Table 
1. PP fault resistance is set between 0.1 and 1 Ω. The 
characteristics of the arc fault are varied by changing the 
gap parameters. 
 

Table 1 Number of sequences per event. 

Class No. sequences 

Normal operation 60 

PP fault 40 

Arc fault 20 

RESULTS 

Classification results are measured with two metrics: 

accuracy and F1-score. Accuracy is the ratio of correctly 

classified samples and the total number of samples, while 

F1-score is meant for unbalanced classes and is more 

conservative. The classes here are slightly unbalanced 

because the majority of the sequences start with the normal 

operating state.  

The classifier’s score is shown in Table 2. The features 

provided to the RNN-based classifier proved to be very 

discriminative as the result is high for both metrics. The 

decomposition of the variable noisy signal into the low and 

high frequency components proved to be a good basis for 

classification. As it turns out, the suggested features can be 

used not only for arc fault detection but also for the PP 

faults. 

Table 2 RNN-based classifier score. 

Accuracy F1-score 

98.05 % 96.90 % 
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CONCLUSION 

This paper presents an RNN-based fault detection of fast-

charging DC EVCS. The method uses features obtained by 

wavelet transform and signal averaging to detect both solid 

and arc faults. The control dependent fault response is 

considered in the development of the method. The method 

has shown to be capable of detecting both solid and arc 

faults, with high accuracy of 98.05% and F1-score of 

96.90%. 
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