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ABSTRACT 

With the increasing number of electric vehicles (EV), an 

overload of the low-voltage power distribution networks is 

expected, overload reflected in the power distribution 

transformers. Monitoring of EVs charging plays a vital 

role in monitoring and predicting how power loading 

patterns may affect the lifetime of the power transformers. 

The possibility of monitoring and predicting the charging 

profile of EVs will help the Distribution System Operator 

plan the integration of charging stations. This work 

proposes four algorithms for the first disaggregation stage 
of the charging EV profiles from aggregated power. These 

use only active/reactive powers acquired in real-time at 

the secondary side of a transformer feeding EV charging 

station(s). The most valuable feature of these algorithms is 

their capability of disaggregating an EV charging load 

from the aggregated power of many other loads in the 

same line. 

INTRODUCTION 

With the increasing number of electric vehicles (EV), an 
overload of the low-voltage power distribution networks is 

expected, reflected in the power transformers. This 

problem is starting to be reflected in the power distribution 

transformers, creating adverse effects on the grid [1]-[3]. 

Monitoring of EVs charging plays a vital role in 

monitoring and predicting how power loading patterns 

may affect the lifetime of the power transformers. The 

possibility of monitoring and predicting the charging 

profile of EVs will help the Distribution System Operator 

plan the integration of charging stations [4]-[7]. 

This work proposes four algorithms for the first 

disaggregation stage of the charging EV profiles from 
aggregated power. These use only active/reactive powers 

acquired in real-time at the secondary side of a transformer 

feeding EV charging station(s). The most valuable feature 

of these algorithms is their capability of disaggregating an 

EV charging load from the aggregated power of many 

other loads in the same line (commercial buildings, 

industrial consumers, residential houses, etc.). Of course, 

in some cases, this method fails to predict the EV charging, 

thus requiring future additional features to improve its 
capacity, such as using other features to increase the 

algorithm's precision [8]-[9]. 

This R&D project between Instituto Superior Técnico and 

Eneida uses Eneida’s DeepGrid platform and their DTVI 

smart sensor-g installed to acquire data from a distribution 

transformer substation [10]. This substation feeds an EV 

charging station, among other loads, operating in the city 

center of Coimbra (GPS: 38,7436111 -9,1325), Portugal. 

The charging station (Fig. 1) uses a Type 2-62196-2 

charging station socket of 3.7 kWh (slow charging), 

alternated current (AC).  

Data acquired consists of daily 5-minute active and 
reactive power samples for 141 days distributed along the 

year from line 2 of the substation transformer. For the 

development and validation of the proposed algorithm, 

power consumption data were compared with that from 

Mobi.e operator, responsible for managing the charging 

station. With this, it is possible to determine the exact time 

of an EV load and compare it with the algorithm results 

using acquired data from the transformer. Four different 

algorithms are proposed and tested based on the confusion 

matrix [11] with the indexes: accuracy, miss-classification 

rate, true-positive rate, false-negative rate, specificity, and 
precision.  

 

 

Fig. 1. Charging station used for this case study. 
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PROPOSED METHODOLOGY FOR 

SIGNATURE ANALYSIS 

This methodology uses the active and reactive power data 

obtained at the transformer's secondary to calibrate a 

segregation algorithm capable of identifying two different 

clusters: with EV charging event and without EV charging 

event. This methodology was developed using a smart 

sensor installed at the secondary of a distribution 

transformer and, by assessing the active and reactive 

power in each feeder, the EV charging event is 
characterized, and its key features are extracted. 

The exact time instant for an EV charging event was 

provided by Mobi.e operator, which is responsible for 

managing the charging station. With this, it is possible to 

evaluate the active and reactive power curves (P-Q) 

changes obtained at the transformer's secondary. The data 

acquired is obtained for each day (24 hours) with a 

sampling period of 5 minutes, between the 5th of March to 

the 26th of July 2018. One example of the active and 

reactive power evolution by April 4th, 2018, is shown in 

Fig. 2. This figure is highlighted in the zone where an EV 

charging event was registered by Mobi.e operator.  
 

 

Fig. 2. Active power, P, and reactive power, Q, of transformer 
feeder 6, line 2, during 4th of April 2018. In red is highlighted the 
EV charging event identified by Mobi.e. 
 

 

Fig. 3. P-Q data containing all weekdays samples, where EV 
charging events are marked as red and the remaining ones as blue. 
 

 

Next, data is divided into two clusters: a) with no EV 

charging and b) with EV charging. One example is shown 

in Fig. 3, containing the P-Q samples between March and 

May, and where the EV charging events are marked in red. 
After the disaggregation of the EV charging events, a 

linear fitting (𝑃 = 𝑚𝑄 + 𝑏) was used to characterize the 

two clusters (red and blue dashed lines in Fig. 3).   

With these linear fitting curves as reference, the Gaussian 

Membership Function (GMF) was used, establishing two 

relative probabilities to each P-Q sample, associated with 

each cluster: 𝑝𝑔𝑚𝑓
𝐶  is the probability of belonging to the 

“EV is Charging” cluster, and 𝑝𝑔𝑚𝑓
𝑁𝐶  is the probability of 

belonging to “EV is not Charging.” 

For each cluster, and considering the linear fitting 

expression in the form of 𝑎𝑄 + 𝑏𝑃 + 𝑐 = 0, the distance 

𝑑𝑖 between each sample point and the cluster fitting line, 

and distance to the corresponding standard deviation are 

given by (1) and (2),respectively, where i corresponds to 

the sample point and n to the total number of samples. 

 

𝑑𝑖 =
|𝑎𝑄𝑖 + 𝑏𝑃𝑖 + 𝑐|

√(𝑎2 + 𝑏2)
 (1) 

 

𝜎𝑔𝑚𝑓 =  √
∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
 

(2) 

 

Then, the Gaussian membership function is defined by (3), 

with 𝑑 the distance from one P-Q point to the 

correspondent cluster fitting line and 𝜇 = 0. 

 

𝑓𝑔𝑚𝑓(𝑑) =  𝑒

−(𝑑−𝜇)2

2𝜎𝑔𝑚𝑓
2

 
(3) 

 

Fig. 4 represents the GMFs computed using the data from 
the two clusters: “EV is not Charging” and “EV is 

Charging.” With this, it is possible to obtain a probability 

for each sample point associated with each cluster. The 

baseline solution of the proposed classifier method 

considers the comparison of the probabilities associated 

with the cluster “EV is Charging” and “EV is not 

Charging.” 

 

 

Fig. 4. Gaussian Membership Function for classes ”EV is not 
charging” and ”EV is charging” using unconstrained linear data 
fitting. 
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Finally, different algorithms were formulated to 

effectively classify an extracted sample as belonging to the 

cluster “EV is Charging” or “EV is Not Charging.” These 

take into account a purely analytical analysis proposed as 
the baseline solution and a contextualized reasoning, 

taking into consideration the EV charging panorama, 

namely the temporal relations between consecutive 

samples and a threshold establishment to validate a 

prediction. The following algorithms were evaluated: 

A. Without temporal filter, binary (baseline solution); 

B. With temporal filter, binary; 

C. Without temporal filter, weighted; 

D. With temporal filter, weighted. 

 

The temporal filter and binary classification processes are 
explained in the following sections. Data were divided into 

training and testing sets. The training set corresponds to 

data from March to May, and the testing set from June to 

July. 

 

Algorithm A: without temporal filter and binary 

This optimization comprehends the baseline solution 

where the classifier determines whether a sample is 

labelled as belonging to the cluster “EV is Charging” or 

“EV is not Charging” by comparing its probabilities to be 

contained in each cluster. For every sample of the testing 

set, the probabilities to be associated with each cluster are 

compared, and the highest one will determine its 

classification. This is a binary classification: the sample 

belongs to the “EV is Charging” cluster if 𝑝𝑔𝑚𝑓
𝐶 > 𝑝𝑔𝑚𝑓

𝑁𝐶 , 

or to the “EC is not Charging” cluster if 𝑝𝑔𝑚𝑓
𝐶 < 𝑝𝑔𝑚𝑓

𝑁𝐶 . 

 

Algorithm B: with temporal filter and binary 

In this algorithm, chronological analysis of the extracted 

samples is considered when performing the classification. 

The reasoning behind this solution concerns the actual 

user’s behavior of that EV charger, in particular the 

charging time. Fig. 5 represents a histogram of the EV 

charging time during the workdays of approximately the 5 

months corresponding to the full dataset. 

Most EV charges have a time between 140 and 150 

minutes, while the second most are between 0 and 10 

minutes. However, by doing a separate inspection on the 

EV charges with less than 20 minutes, both the extracted 
P and Q evolution show very little variation, with almost 

no impact on the grid. With this information and 

considering the objective of predicting an increase of 

power load due to EV changing events, a temporal filter 

was applied to classify “EV charging” events. One sample 

can only be considered as belonging to this cluster if it 

remains in this cluster for more than 20 minutes. 

 

 

Fig. 5. Histogram of EV charging time during workdays with 10 
minutes bin width. 

 

Algorithm C: without temporal filter and 

weighted 

Algorithm C is also an incremental modification to the 
baseline solution A, without temporal featuring, however 

considering a threshold (T) in terms of the difference 

between GMF probabilities to validate a prediction. In this 

solution, to obtain a positive prediction, one has to achieve 

the following:  𝑝𝑔𝑚𝑓
𝐶 ≥ 𝑝𝑔𝑚𝑓

𝑁𝐶 + 𝑇 , 𝑇 ∈ ]0,1[. 

Now, to obtain a calibrated T value, a commitment 

between the truly predicted samples and falsely predicted 

ones had to be considered. In other words, T was chosen 

so that the true positive and true negative predictions are 

maximized, and false positive and false negative 

predictions are minimized. To accomplish that, a 
histogram comparing the true positive predictions with the 

positive ones was computed, and it is presented in Fig. 6. 

 

Fig. 6. Histogram representing the number of positive and true 
positive predictions with different probability differences 
between GMFs of classes ”EV is Charging” and ”EV is not 

Charging. 

 

Based on the results presented in Fig. 6, the selected 
threshold T value was 0.1, given that the total percentage 

of true positive predictions out of the positive ones is 

36.9%. This quantity means that there must be at least a 10 

% difference between the GMF probabilities of each class. 
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Algorithm D: with temporal filter and weighted 

Finally, this solution results from a confluence of the three 

previously algorithms B and C, using the baseline solution 

with both the temporal filter and the threshold value. 

RESULTS 

This section comprises the results concerning the proposed 

algorithms for the classifier. To have a realistic assessment 

of the performance of this classifier, the confusion matrix 

[11] was computed, and some efficiency indices were 

extracted. These indices comprise the overall accuracy and 

miss-classification rate (MCR) as well as the true-positive 

rate (TPR), false-negative rate (FNR), specificity, and 

precision [11]. Furthermore, to increase the impartiality of 

the assessment of the classifier performance, a stratified 5-

fold cross-validation was done using the full dataset, and 

the displayed results, presented in Fig. 7, are the 
proceedings. Moreover, it is worth considering the 

prevalence level of that EV charger of 30.81%, indicating 

the usage percentage with the used case study data. 

 

 
Fig. 7. Representation of the confusion matrix indices to evaluate 
the classifier performance of each algorithm A-D, being MCR 
the miss-classification rate, TPR the true-positive rate, and FNR 
the false-negative rate. 
 

Analyzing the results represented in Fig. 7, the first thing 

to notice is the accuracy and miss-classification rate, 

respectively between 83%-87% and 13%-17% across 

solutions A to D. These results give an overall perspective 

on the classifier performance. However, they can be 

misleading, hence the need for the other indices. 

Moreover, knowing that the prevalence level is around 

31%, there is significantly more data concerning the class 

“EV is not Charging.” This information might be related 

to the difference between the TPR and specificity - how 

often does the classifier predict that an EV charging event 

was not occurring when, in fact, it was not occurring - 

observable in Fig. 7, respectively 74%-81% and 85%-92% 

across solutions. In addition, the precision – the percentage 

of correct positive predictions - ranges from 73%-83% 

across solutions. 

In conclusion, the four presented algorithms solutions have 

different performances, and they can be employed 

according to the DSO specification. If the TPR 

performance is more important, solution A is more suitable 

at the expense of a worse FNR. On the other hand, if the 

minimization of the FNR is more important than the 

maximization of the TPR, solution B is the best one. In 

addition, if the specificity and precision are preferable 

when performing the classification, solution D is more 

adequate. 

Overall, an equalized solution might be optimization B, 

guarantying 78% of TPR, 91% of specificity, and a 

precision of 82%. In addition to the performance of each 

algorithm, the feasibility limits of the proposed algorithms 

were verified. 

Up until this point, the research was conducted using the 

actual P of the used EV charger – 3.7kW – corresponding 

to Slow Charging mode [1]. In this subsection, different P 

charging values (𝑃𝑘
𝐶𝐻) are tested to understand the 

feasibility of this classifier when it is applied to charging 

stations with various power modes.  

In detail, the classifier feasibility is determined when the 

active charging power varies linearly by a multiplication 

factor k. To accomplish that, whenever a charge was 

occurring, the P load was subtracted by 3.7kW, 

corresponding to the EV charging, remaining with the 

original background load (𝑃𝑏𝑘  𝑎𝑛𝑑 𝑄𝑏𝑘 ). Then the active 

power during the EV charging events is multiplied by k 

and added to the background load. The accuracy, TPR, and 

specificity results of each algorithm classifier with 

different EV charging power magnitudes are presented in 

Fig. 8, being k the multiplication factor. 

 

 
Fig. 8. Accuracy, a), TPR, b), and specificity, c), of algorithm A 
to D, for a k variation of EV charging load. 

 

As expected, the increase in the EV charging load (𝑘 > 1), 

leads to both the TPR and the specificity increase, resulting 

in an overall accuracy increase of the classifier 
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performance. These results are expected, given that with 

an increase in the EV charging power, the dissociation of 

P-Q samples when training and testing the model is higher, 

resulting in better classification performance. 
On the other hand, the performance drop when the k value 

decreases and stabilizes around k = 0.5. In this matter, the 

data clusters “EV is Charging” and “EV is Not Charging” 

start to overlay, with no real distinction between them, 

making the respective linear fitting lines and GMF curves 

very close together, ensuring an unfeasible meaning when 

used to make a prediction. However, it is interesting to 

note that the accuracy of algorithm D presents the highest 

value, higher than 50%, for k=0, while the TPR is higher 

for algorithm A. 

CONCLUSIONS 

The current work presents a methodology for EV charging 

identification and classification in a low-voltage 

distribution system. The P-Q curves measured at the 

secondary power transformer are compared with the list of 

charging events provided by the Mobi.e operator to 

characterize two clusters: one without EV charging and the 

other with EV charging events). The clusters present 

distinct behaviors described by two gaussian membership 

functions centered in two distinct P-Q lines.  
Based on the probability of each point to belong to each 

cluster, four classification algorithms are tested: with and 

without temporal filters and using a binary or weighted 

probability. The algorithms using a temporal filter with 

binary or weighted probabilities present the best overall 

performance. This temporal filter only considers a 

charging event if charging is identified for more than 20 

minutes. The accuracy and precision increase, while the 

miss classification and false-negative rates decrease when 

the temporal filter is used. Compared with the base 

algorithm without a temporal filter, the accuracy increases 

from 83% to 87%, the precision increases from 73% to 
83%, the miss classification rate decreases from 17% to 

13%, and the false-negative rate decreases from 15% to 

8%.  

The proposed classification algorithms are simple to 

implement and can be used as a first disaggregation stage 

of the charging EV profiles from aggregated power. With 

the correct calibration of the clusters and their update along 

the time, they can provide additional information to the 

Distribution System Operators to plan the integration or 

redistribution of EV charging stations. 
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