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ABSTRACT 

The integration of Distributed Energy Resources (DERs) 

and Electric Vehicle Charging Points (EVCPs), in the Low 

Voltage (LV) networks, is creating several challenges to 

the Distribution System Operators (DSOs) as it may push 

the voltage magnitudes outside the regulated boundaries 

and/or increase its unbalance beyond the acceptable 

limits. In this paper, it is proposed a method capable of 

predicting the voltage impact of a new DER or EVCP 

installation without requiring network topology and, 

therefore, helping DSOs to optimise their LV networks. 

INTRODUCTION 

According to the International Energy Agency, the 

cumulative distributed solar Photovoltaics (PV) capacity 

in Germany increased from 28.4GW to 44.8GW 

(approximately 58%) between 2014 and 2020 [1, 2]. The 

same phenomenon is happening in other countries, mostly 

on a smaller, yet non-negligible scale, mainly due to 

economic reasons and environmental concerns. 
With the transport electrification that has been occurring 

and will continue to be implemented over the next few 

years, it is expected that in 2030 more than 25% of the 

passenger-car and light-duty vehicle market share will be 

occupied by electric vehicles (contrasting with the 2.5% 

registered in 2019) [3]. 
While the production of energy in LV networks, using for 

instance solar panels, can increase the voltage magnitude, 

electric vehicle chargers can decrease the voltage 

magnitude across the feeder (considering exclusively grid 

to vehicle power flow).  Therefore, the rapid growth of 

both PV and EVCPs in LV networks may drive voltage 

unbalance and magnitudes outside of the stipulated limits, 

if no action is taken. If the connection impacts of a DER 

or an EVCP are evaluated before its installation, the 

number of events where the voltage does not meet the 

regulated limits can be minimised by applying preventive 

measures recommended by the DSO. These measures 

could possibly include power curtailment (for DERs), load 

shifting (for EVCPs) and installation of equipment with 

lower-rated power. 
Wang et al. suggested an approach capable of calculating 

the customer voltages for any intended operation of DERs 

by estimating the network impedances using the network 

topology and Smart Meter (SM) measurements and 

running three-phase power flows [4]. 
Traditionally, the energy flowed solely in the downstream 

direction which led the control and supervision to be 

concentrated at higher voltage levels. Additionally, the 

unreported changes that occurred on LV networks over 

time have led DSOs to not have accurate network 

topologies for most of these grids.  
In this work, it is proposed a new method that evaluates 

the voltage impacts of a DER or EVCP installation, based 

on measurements taken by SMs, in an LV network without 

requiring its topology. The following section describes the 

proposed method and explains the steps to follow. After 

that, the forecasting model, which is one of the foundations 

of the method, is evaluated by performing several 

predictions and comparing them with the simulated data.  

METHOD 

The approach estimates the voltage measurements that 

could have been taken in each SM, if a certain DER/EVCP 

was already installed in the past. To do so, it estimates the 

voltage variations that could have been caused by the 

DER/EVCP and sums them with past voltage 

measurements.  

The method can be divided into the following steps: 

- SM data collection; 

- SM data pre-processing and phase assignment; 

- Forecasting model training; 

- Selection of typical days; 

- Voltage assessment. 

Firstly, it is necessary to collect and pre-process SM 

measurements, as they are the main component of the 

method. Then, using the pre-processed data, a forecasting 

model is trained to predict the voltage variations at each 

timestamp. Finally, a set of days is selected from the 

history of measurements, the voltage at each SM is 

forecasted for these days according to the DER/EVCP 

parameters and its limits analysed. 

 

SM data collection 

In order to be able to forecast the connection of a DER or 

EVCP at any customer, the LV network must be totally 

covered by SMs. This also allows to forecast the voltage at 

each client and to ensure that the power and voltage 

variation relations between every SM are extracted. 

Each SM must collect the following measurements: 

- Voltage at each consumer connection phase; 

- Energy/power consumption, preferably at each 

consumer connection phase. 
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SM data pre-processing and phase assignment 

Data quality has a great impact on the model’s 

performance, hence the need for a pre-processing step. 

This step can include the following actions: 

- Removing null measurements and outliers; 

- Dropping SMs with very low or constant 

measurements of energy/power consumption. 

To train the previously stated model, it is also required to 

assign the SM connection phases to the secondary 

substation phases. This can be achieved either by 

supplying a list that contains the corresponding SM phases 

or running a classification algorithm [5] (which requires a 

monitoring system at the secondary substation as shown in 

figure 1).  

 

 
Figure 1: Block diagram representing the method. 

 

Model training 

Using the pre-processed voltage and power measurements, 

their variations between consecutive timestamps are 

calculated. These variations are then used to train the 

forecasting model. Additionally, a large historical sample 

of SM data will allow the forecasting model to better 

extract the underlying relations between voltage and 

power variations. 

 

Selection of typical days 

The voltage assessment can be based on the complete 

historical dataset or just a subset of days that represents 

distinct load profiles (typical days).  

The analysis using typical days lets DSOs understand on 

which group of days there is a greater likelihood of voltage 

not meeting the regulated boundaries and, therefore, help 

the DSO to recommend specific measures. The days 

present in the historical dataset can be grouped using a 

clustering tool and the typical days obtained by getting the 

medoid of each cluster. 

 

Voltage assessment 

In order to evaluate the voltage impacts, it is necessary to 

forecast the voltage variations due to the connection of a 

DER or EVCP. This can be achieved by using the trained 

prediction model and defining the following parameters: 

- Rated power; 

- Typical profile (can be based on a real profile or 

other to predict the worst-case scenario, for 

instance); 

- Connection location; 

- Phase of installation (only necessary if it is 

intended to install a single-phase DER or EVCP 

on a three-phase consumer). 

The forecasting model returns the expected voltage 

variations based on the power variations introduced on the 

network by the DER or EVCP, which correspond to the 

typical DER/EVCP profile defined. The predicted voltage 

at each SM with the installed DER or EVCP is calculated 

by summing the forecasted voltage variations with the 

voltage measurements taken during the typical days. With 

the forecasted voltages, it is possible to study if the 

aforementioned connection is expected to violate any 

established limit. 

FORECASTING MODEL EVALUATION 

To evaluate the errors of the model, several simulations 

were run for different network configurations and 

DER/EVCP parameters. 

The first step consisted in defining the number of 

simulations and the degree of SM visibility. Each 

simulation performed the following actions: 

1. Define the training and test period; 

2. Select randomly a network; 

3. Run a three-phase power flow for the selected 

network without the DER/EVCP installation for 

the training and test period;  

4. Select randomly DER/EVCP parameters; 

5. Run a three-phase power flow for the previously 

mentioned network with the DER/EVCP 

installation for the training and test period;  

6. Calculate voltage variations using the results 

obtained in 2 and 4; 

7. Train the forecasting model using the values 

obtained in 2 and following the steps mentioned 

in the previous section; 

8. Get the predicted voltage variations by inputting 

the power variations for the test period in the 

trained model; 
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9. Calculate errors using the voltage variations for 

the test days calculated in 6 and returned in 8. 

 

Simulated networks 

The simulated networks were based on real networks built 

on OpenDSS and used on the Low Voltage Network 

Solutions project [6]. Neutral lines were added and 

approximately 20% of the consumers became three-phase 

connected loads in each network. 

These grids contained a generator in the medium voltage 

network with variable voltage magnitude to mimic the 

upstream network. The medium voltage magnitudes used 

in the simulation were based on measurements collected 

by different sensors manufactured by ENEIDA.IO.  

The load profiles of each network were randomly 

attributed to a selection of real SM measurements taken 

during the Low Carbon London project [7], which led to 

unbalanced networks. 

 

Simulated DER/EVCP 

For these simulations, it was considered that only PV 

panels or EVCP could be connected, and their rated power 

could be between 1kW and 10kW. The profiles from these 

installations were selected from the Customer-Led 

Network Revolution project [8] and then normalised. 

 

Performance 

To extensively evaluate the method, the performed 

simulations considered different SM visibility degrees and 

different training set sizes. 

Since the voltage variations in DER/EVCP non-

connection phases are very small, they were ignored. 

Therefore, the voltage variation errors were only analysed 

in the DER/EVCP connection phases. 

The metrics used to assess the forecasting model 

performance were:  Normalised Mean Absolute Error 

(NMAE), Normalised Root Mean Square Error (NRMSE) 

and Mean Bias Error (MBE). These metrics were 

calculated according to (1), (2) and (3).  

 

𝑁𝑀𝐴𝐸 =  
∑ |𝑂𝑡 − 𝐹𝑡|𝑛
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×
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In (1), (2) and (3), 𝑛, 𝑂𝑡, 𝐹𝑡 and 𝑂 correspond to total 

number of samples, observed value at sample 𝑡, forecasted 

value at sample 𝑡 and mean of the observed values, 

respectively. 

The obtained metrics for the different simulations are 

shown in tables 1, 2 and 3. It is important to note that for 

the simulations performed the power measurements in 

each phase at three-phase SM were available. 

 

Table 1: Metrics obtained for a set of 365 days of history 

(100 days of test). 

  SM visibility 

Metrics 100% ~ 90% ~ 75% ~ 50% ~ 25% 

NMAE (%) 3.83 5.22 7.62 8.43 5.90 

NRMSE (%) 10.31 14.27 20.71 23.33 16.44 

MBE (V) 0.01 0.02 0.03 0.03 0.03 

 

Table 2: Metrics obtained for a set of 60 days of history 

(20 days of test). 

  SM visibility 

Metrics 100% ~ 90% ~ 75% ~ 50% ~ 25% 

NMAE (%) 5.89 5.86 7.40 8.31 7.44 

NRMSE (%) 15.56 15.16 19.93 22.72 19.94 

MBE (V) 0.03 0.03 0.03 0.04 0.04 

 

Table 3: Metrics obtained for a set of 30 days of history 

(10 days of test). 
 SM visibility 

Metrics 100% ~ 90% ~ 75% ~ 50% ~ 25% 

NMAE (%) 7.56 6.80 12.01 11.62 8.95 

NRMSE (%) 19.94 18.16 31.09 31.00 23.63 

MBE (V) 0.02 0.03 0.04 0.06 0.04 

 

According to the NMAEs calculated, the overall errors 

present in the predictions delivered by the forecasting 

model are low. In some timestamps, the model cannot 

provide forecasts of similar quality to most, as the NRMSE 

values show. Additionally, the model does not tend to 

underestimate or overestimate, as the MBEs calculated are 

close to 0V. 

From the NMAEs and NRMSEs presented, it is possible 

to conclude that the forecasting errors tend to be higher 

when the length of the training set is smaller and the SM 

visibility is lower. This is to be expected as, by increasing 

the SM visibility and the length of historical dataset, a 

more representative view of the phenomenon at hand is 

given to the model. 

CONCLUSION 

A new method capable of predicting the voltage variations 

at each SM, due to the installation of an EVCP/DER, was 

developed. Unlike other methods, it does not require a 

network topology to predict the voltage impact.  

 

(1) 

(2) 

(3) 
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It uses measurements taken by SMs during past days and 

the typical DER/EVCP profile to predict the voltage 

magnitudes during these days if a specific DER/EVCP was 

already connected.  

Performing this type of analysis before installing a 

DER/EVCP in a LV network lets DSOs understand the 

possible consequences this installation brings at each 

customer and minimise them by enforcing preventive 

measures. Additionally, it can help DSOs decide which 

phase a single-phase DER/EVCP should be connected in a 

three-phase customer by forecasting the voltage impact in 

each phase and selecting the one that optimises the 

network operation. 

The forecasting model provided predictions with low 

errors and did not show any overestimation or 

underestimation trend. Additionally, it was concluded that 

the model returned forecasts with higher accuracy when 

the length of the training set is larger and SM visibility are 

higher. 

Therefore, the developed method can be seen as a useful 

tool for DSOs for the years to come due to the expected 

growth of DERs and EVs for the previously stated reasons. 

The forecasting model can possibly be improved by 

performing a pre-selection of input variables and by using 

other types of models to predict the voltage variations. 
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