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ABSTRACT

With the advent of new loads and generation on the low
voltage grid, voltage fluctuation has increased, especially
in active distribution grids with a high penetration of
distributed resources and a large deployment of electric
vehicles. All this leads to greater uncertainty in future
consumption patterns, giving greater importance to
predictive models capable of adapting in real time to
unexpected variations. Given the current measuring and
communication infrastructure of smart meters in Spain, it
is not feasible to request real-time data from all
consumers. However, it is possible to communicate on-line
with a few, which we call guard (or sentinel) smart meters.
The results present (I) a novel methodology to select the
sentinel meters and (Il) their integration in predictive
models based on neural networks, improving their ability
to adapt and anticipate future states. For the analyses, it
has been used (i) data from three groups of meters
belonging to the living lab of a DSO, (ii) data from the
head-end feeders of the transformer substation and (iii)
data from the nearest weather station.

INTRODUCTION

Smart grids play a critical role in the efficient use of energy
resources in today's societies. Electric vehicles (EVs) and
distributed generation (DG), along with other emerging
technologies such as heat pumps, are increasing the
complexity and requirements of distribution networks.
Along with proper grid reinforcement, it is essential to
efficiently manage these new technologies, for which
smart charging and flexibility mechanisms play a critical
role.

Within the framework of planning and flexible network
operation, data analysis techniques are key, especially in
the field of consumption forecasting, which allows
anticipation and adaptation to the state of the network [1].
The importance of Neural Networks in terms of
predictions is well known.

In the literature, different prediction approaches based on
Neural Networks can be found, among others, auto-
regressive predictive models trained with historical data
[2], voltage estimators trying to infer the network model
using known or other external variables [3], etc.

CIRED 2022 Workshop

However, knowing the expected future development of
power grids (EVs, DG, heat pumps, roof PVs, etc.); the
voltage fluctuation of consumers may vary in a way that is
not expected for these type of models. It is therefore
important to have models that use data in “real” time or as
close to real-time as possible, so that they can adapt to
these variations.

Despite the advanced metering infrastructure (AMI) for
low voltage (LV) networks existing in Spain, it is well
known that all smart meters (SM) cannot communicate
their status in real time due to communication saturation in
the grid, however, it is possible to request the status of a
few of them, which we call guard smart meters or
sentinel smart meters.

This paper proposes a potentially novel methodology for
sentinel smart meter selection, consisting of a modification
of the well-known “Maximum Relevance and Minimum
Redundancy” (mRMR) feature selection method [4] [5].
Regarding consumers voltage prediction, Convolutional
Neural Network (CNN) is proposed. CNN combines the
real-time data of voltage and current at the Secondary
Transformer Substation (TS) and voltage data of sentinel
meters, predicting the voltage of the rest of the meters in
the network.

The predictions obtained reduce the error to less than half
a volt in some cases, improving errors by up to three times
compared to predictions obtained without the use of guard
meters. In addition, the ability to adapt to external
variations, such as, for example, transformer tap changes,
or meteorological and socio-cultural events, is
demonstrated.

Real historical data from three groups of smart meters have
been used. In order to analyze the impact of external
variables in the model, data from the corresponding TS
feeders and from the nearest weather station have also been
used.

GUARD SMART METER SELECTION

The difficulty in selecting sentinel meters lies in finding a
few that yield trained models capable of inferring the state
of the rest of the meters. The similarity with problems such
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as feature selection is obvious, for example, additivity is
neither fulfilled here, i.e., the n best sentinels individually
do not have to be the best n as a group.

A well-known methodology for feature selection is mRMR
[4] [5]. Although in the literature it is generally used for
discrete variables [6] [7], we also find examples for
continuous variables [4]. In addition, the most studied
deployments focus on a single target variable, however, in
the case carried out here; there are multiple target
variables, in particular, all the meters not selected as
sentinels, therefore, some modifications are necessary

Commonly, to measure the relevance of a possible
predictor variable, the F-statistic of the linear regression
between the candidate variable and the target variable is
used. For estimating redundancy, the Pearson correlation
coefficient (p) between the candidate variable and the
variables already selected is frequently used. The method
to combine both indicators varies, but the main methods
are difference and quotient. After computing a score that
integrates the relevance and redundancy, the variables that
obtain the maximum value are progressively selected.

Let Q be the total set of variables, given m variables (m
time series, one per smart meter, i.e., |Q2| = m), then, given
a candidate variable x;, a set S of variables already selected
and a target variable y, (1) and (2) represent the mRMR F-
test correlation difference and F-test correlation quotient
respectively.
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where p(Xs, x;) is the Pearson correlation coefficient, and
F(y,x;) is the F-statistic. However, in the problem
discussed here, there will not be a single target variable y,
but there will be a set of target variables Y, with cardinal
[Y] = 1| - |S] - 1. Consequently, a small adjustment is
necessary to accommodate multiple target variables.
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To deal with the problem of multiple targets, the F statistic
of a multivariate linear regression could also have been
used instead of the mean of ome-to-one F-statistics,
however, the method employed (one-to-one) is postulated
as the best way to maintain the nature of the initial idea.
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Since the forward method has been used, the first sentinel
is selected only on the basis of relevance. Other strategies
such as the backward method can be found in the literature

[7].

Standard mRMR methods for continuous variables use the
F-statistic to measure relevance; however, the magnitude
of variability of F' is very different from p. Some papers
propose a way to normalize the values [8] [9] [10], or other
relevance measures such as R-value [11] [12]. In this
paper, it is proposed to use the R-squared (R’) measure,
since it is the natural alternative to F and its values are
already constrained, without depending on the number of
observations or degrees of freedom of the linear
regression.
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In this paper, two other simpler methods are also proposed:
(i) random selection of sentinel meters and (ii) selection of
sentinels by voltage level (V). For the second method (ii),
we calculate the average voltage of the candidate meters,
and we select (and eliminate from the list of candidates)
the one with the voltage closest to the median, the one with
the maximum voltage, and the one with the minimum
voltage consecutively. This loop will be interrupted
depending on the number of sentinels we want to select.
In order to compare the presented methods, the following
methodology is proposed:

1. The time series with 15-minute voltage measurements
of 32 monophasic SM for a period of approximately
two years have been used.

2. The selection of 1 to 5 sentinels is proposed

consecutively. For the random method, 20 random

subsets are selected for each number of sentinels.

Data are divided into train-tests with a 90-10 ratio.

4. Each sentinel selection method is applied on the train
set. After that, 10 CNN are trained for each case.

5. Predictions are made on the test set and quality is
measured with the mean absolute error (MAE). The
median of the 10 predictions is calculated. In the
random case, it is also necessary to compute the
median of the 20 subsets.

W

The use of the MAE error measure is proposed since, in
general, traditional error measures, such as mean absolute
percentage error (MAPE), cannot reasonably quantify
individual load forecasting performance. Some papers
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already propose the use of the MAE or modifications of
the MAPE [13] [14].

Forecasting error
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Figure 1: Median MAE over the test set for the predictions
corresponding to the 10 CNN for each number of sentinel
smart meters and method.

As Figure 1 shows, the R?CD method achieves the best
results, followed by the R°CQ and V methods, improving
considerably with respect to the original methods found in
the literature (FCD, FCQ). Therefore, the methods
proposed have turned out to be successful, thus providing
new methodologies for feature selection (sentinel smart
meter selection in this study).

Note that the median magnitude of the MAE over all
predictions of all target variables is less than 0.9V,
reaching less than 0.675V in the best case. It is also
important to highlight the consistency of the results,
having trained 50 CNN for each method, except for the
random method, where 1000 have been trained, adding up
to 1250-trained and tested neural networks.

It is worth mentioning that the number of target variables
changes for each number of sentinels, i.e., for the case of
1 sentinel, the voltage is inferred for the other 31 meters,
for the case of 2 the other 30, etc. Therefore, the median is
calculated on a set of MAEs of different size for each case.
This makes the comparison not entirely objective, but
illustrative.

IMPACT OF EXTERNAL VARIABLES

The objective is to assess the impact of variables external
to the smart meters on the model, for this purpose,
measurements of the corresponding feeder at the head-end
TS and meteorological (MET) data have been used.

The possible influence of the TS feeder data seems
obvious; in the case of weather data, it may help the model
to anticipate the influence of appliances such as heating,
ventilation and air conditioning (HVAC). In this TS there
is no influence of EV, DG, etc.
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Since data must coincide in time, the available dataset has
been reduced to one year. As a result, the quality of the
predictions worsens; however, they are still sufficient to
compare the relative impact.

The external variables used are: (TS) head-end voltage and
current and (MET) temperature, wind, humidity, pressure,
type of sky and whether the day was a holiday or not.

Again, the selection from 1 to 5 sentinels consecutively has
been iterated, it has been considered all possible
combinations with external variables, training 10 CNN for
each case, and the median MAE has been calculated.

Forecasting error
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Figure 2: Median MAE over the test set for the predictions
corresponding to the 10 CNN for each number of sentinel
smart meters and used external variables. The bottom

graph shows the zoom on the two best curves.

As shown in Figure 2, introducing MET data significantly
worsens the results. This is mainly due to two factors: (i)
the available data had a frequency of 30 minutes and was
interpolated to 15 minutes and (ii) the data corresponds to
a weather station at a distance of more than Skm from the
TS. Therefore, we are putting noise into the model. As can
be observed in the bottom graph, including the feeder data
improves the predictions.

Therefore, the following (sent + TS) is postulated as the
best methodology: (i) select the sentinel meters using the
R’CD method and (ii) combine the data from these
sentinels and the voltage and current at the TS to generate
a neural network-based model capable of estimating the
voltage of the remaining meters.

MAIN TESTS

In this section, sent + TS methodology will be put into
practice with 5 sentinel smart meters. For this purpose,
three different groups of sentinel smart meters belonging
to different phases (R, S, and T) have been selected.
Groups /, 2 and 3 consist of 26, 24 and 32 monophasic
meters respectively.
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The following steps have been followed: (i) first, data has
been separated into train-test with a 90-10 ratio, (ii) on the
train set, the R’CD method is applied to select the 5
sentinels, (iii) then the neural network is trained, (iv)
finally the voltage of the unselected meters is predicted
over the test set and the MAE is measured.

The nature of the method lies in exploiting the similarity
between groups of monophasic consumers belonging to
the same feeder and phase [15]. CNN receives as input a
vector of size 7 (the voltage of the 5 sentinels plus the 2
header values —current and voltage- at instant #), and
returns as output a vector of size » (the voltage at instant ¢
for the rest of the meters: sizes 21, 19 and 27 for groups 1,
2 and 3 respectively). Figure 4 shows the process
schematically for group 3.
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Figure 3: Schematic representation of the used CNN
architecture, specifically for case 3 (27 target variables).

Given that predictions are made for multiple users, it is not
feasible to study the forecasts one by one; however, a
simple way to assess the results is to analyze the
distribution of the errors.

Distribution of all errors Distribution of average error per user
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Figure 4: Distribution of all errors (left) and distribution

of average error per smart meter (right).

The blue, orange and green curves represent the
distribution of errors for groups of 21, 19 and 27 meters
respectively. In the left chart of Figure 4, we can see how
the distribution of all the errors for the three groups follow
chi-square distributions, with most of the errors
concentrated between 0V and 1V.
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However, the chart on the right shows how the
distributions of the mean error per user follow a shape
more similar to the normal distribution. This makes sense,
since, according to the central limit theorem, the greater
the number of independent random variables combined,
the closer to a normal distribution. Group 2 appears to have
a somewhat different distribution, more similar to a
bimodal one.

Using the Mann-Whitney U null hypothesis test between
the distribution of errors of the groups one-to-one, it has
been verified with 99% confidence that the average errors
per user distribution of group 2 follows a significantly
different distribution from groups / and 3.

Table 1: Mann-Whitney U Test one-to-one p-values

Groups /-2 | Groups 2-3 | Groups /-3
7.34x10°¢ 2.67x10° 0.37

p-value

The main reason is that the predictions for 3 of the 19
meters of group 2 is significantly worse. However, the fact
that the group 2 is smaller also has an impact, as stated in
[16], where the authors claim that the accuracy of
predictions improves as the group size increases.

In any case, these are good results, with most errors
concentrated in 0-1V and with average error per user
contained in 0.5-1V. It should be noted that in some cases
even the uncertainty range of smart meters measurements
is higher. Finally, for illustrative purposes, Figure 5
depicts one of the best predictions obtained for a consumer
of group 1.

MAE: 0.35.
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Figure 5: Prediction on a consumer of group /.

CONCLUSION

The mRMR methods with the necessary adaptations (R?CD
and R’CQ) are postulated as the best for the selection of
guard meters. Convolutional neural networks are able to
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efficiently infer the associations between sentinel meters
and feeders with respect to the rest of the consumers.

FUTURE WORK

An open line of research would be to use the connection
hierarchy of the power grid, which has already been used
for distribution load forecasting [17], to exploit the
selection of sentinel meters. The association between
sentinel selection method and CNN model improvement
remains to be studied. Finding the cut-off point in the
number of sentinels that contribute significantly to the
CNN model can be critical. Another crucial aspect,
outliers, remains to be studied. The usefulness of the model
may be questioned if the errors are concentrated in extreme
voltage values, which are, in short, where flexibility
decisions have more weight. To this end, it is proposed to
combine this model with a time series classification model
capable of predicting future outliers. Work is currently in

progress.
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