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ABSTRACT 
With the advent of new loads and generation on the low 
voltage grid, voltage fluctuation has increased, especially 
in active distribution grids with a high penetration of 
distributed resources and a large deployment of electric 
vehicles. All this leads to greater uncertainty in future 
consumption patterns, giving greater importance to 
predictive models capable of adapting in real time to 
unexpected variations. Given the current measuring and 
communication infrastructure of smart meters in Spain, it 
is not feasible to request real-time data from all 
consumers. However, it is possible to communicate on-line 
with a few, which we call guard (or sentinel) smart meters. 
The results present (I) a novel methodology to select the 
sentinel meters and (II) their integration in predictive 
models based on neural networks, improving their ability 
to adapt and anticipate future states. For the analyses, it 
has been used (i) data from three groups of meters 
belonging to the living lab of a DSO, (ii) data from the 
head-end feeders of the transformer substation and (iii) 
data from the nearest weather station. 

INTRODUCTION 
Smart grids play a critical role in the efficient use of energy 
resources in today's societies. Electric vehicles (EVs) and 
distributed generation (DG), along with other emerging 
technologies such as heat pumps, are increasing the 
complexity and requirements of distribution networks. 
Along with proper grid reinforcement, it is essential to 
efficiently manage these new technologies, for which 
smart charging and flexibility mechanisms play a critical 
role. 
 
Within the framework of planning and flexible network 
operation, data analysis techniques are key, especially in 
the field of consumption forecasting, which allows 
anticipation and adaptation to the state of the network [1]. 
The importance of Neural Networks in terms of 
predictions is well known. 
 
In the literature, different prediction approaches based on 
Neural Networks can be found, among others, auto-
regressive predictive models trained with historical data 
[2], voltage estimators trying to infer the network model 
using known or other external variables [3], etc. 

 
However, knowing the expected future development of 
power grids (EVs, DG, heat pumps, roof PVs, etc.); the 
voltage fluctuation of consumers may vary in a way that is 
not expected for these type of models. It is therefore 
important to have models that use data in “real” time or as 
close to real-time as possible, so that they can adapt to 
these variations. 
 
Despite the advanced metering infrastructure (AMI) for 
low voltage (LV) networks existing in Spain, it is well 
known that all smart meters (SM) cannot communicate 
their status in real time due to communication saturation in 
the grid, however, it is possible to request the status of a 
few of them, which we call guard smart meters or 
sentinel smart meters. 
 
This paper proposes a potentially novel methodology for 
sentinel smart meter selection, consisting of a modification 
of the well-known “Maximum Relevance and Minimum 
Redundancy” (mRMR) feature selection method [4] [5]. 
Regarding consumers voltage prediction, Convolutional 
Neural Network (CNN) is proposed. CNN combines the 
real-time data of voltage and current at the Secondary 
Transformer Substation (TS) and voltage data of sentinel 
meters, predicting the voltage of the rest of the meters in 
the network. 
 
The predictions obtained reduce the error to less than half 
a volt in some cases, improving errors by up to three times 
compared to predictions obtained without the use of guard 
meters. In addition, the ability to adapt to external 
variations, such as, for example, transformer tap changes, 
or meteorological and socio-cultural events, is 
demonstrated. 
 
Real historical data from three groups of smart meters have 
been used. In order to analyze the impact of external 
variables in the model, data from the corresponding TS 
feeders and from the nearest weather station have also been 
used. 

GUARD SMART METER SELECTION 
The difficulty in selecting sentinel meters lies in finding a 
few that yield trained models capable of inferring the state 
of the rest of the meters. The similarity with problems such 
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as feature selection is obvious, for example, additivity is 
neither fulfilled here, i.e., the n best sentinels individually 
do not have to be the best n as a group. 
 
A well-known methodology for feature selection is mRMR 
[4] [5]. Although in the literature it is generally used for 
discrete variables [6] [7], we also find examples for 
continuous variables [4]. In addition, the most studied 
deployments focus on a single target variable, however, in 
the case carried out here; there are multiple target 
variables, in particular, all the meters not selected as 
sentinels, therefore, some modifications are necessary 
 
Commonly, to measure the relevance of a possible 
predictor variable, the F-statistic of the linear regression 
between the candidate variable and the target variable is 
used. For estimating redundancy, the Pearson correlation 
coefficient (휌) between the candidate variable and the 
variables already selected is frequently used. The method 
to combine both indicators varies, but the main methods 
are difference and quotient. After computing a score that 
integrates the relevance and redundancy, the variables that 
obtain the maximum value are progressively selected. 
 
Let Ω be the total set of variables, given m variables (m 
time series, one per smart meter, i.e., |Ω| = m), then, given 
a candidate variable xi, a set S of variables already selected 
and a target variable y, (1) and (2) represent the mRMR F-
test correlation difference and F-test correlation quotient 
respectively. 
 

𝑓 (𝑥 ) = 𝐹(𝑦, 𝑥 ) −
1

|𝑆|
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where 휌(x , 𝑥 ) is the Pearson correlation coefficient, and 
𝐹(𝑦, 𝑥 ) is the F-statistic. However, in the problem 
discussed here, there will not be a single target variable y, 
but there will be a set of target variables Y, with cardinal 
|Y| = |Ω| - |S| - 1. Consequently, a small adjustment is 
necessary to accommodate multiple target variables. 
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(4) 

 
To deal with the problem of multiple targets, the F statistic 
of a multivariate linear regression could also have been 
used instead of the mean of one-to-one F-statistics; 
however, the method employed (one-to-one) is postulated 
as the best way to maintain the nature of the initial idea. 
 

Since the forward method has been used, the first sentinel 
is selected only on the basis of relevance. Other strategies 
such as the backward method can be found in the literature 
[7]. 
 
Standard mRMR methods for continuous variables use the 
F-statistic to measure relevance; however, the magnitude 
of variability of F is very different from 휌. Some papers 
propose a way to normalize the values [8] [9] [10], or other 
relevance measures such as R-value [11] [12]. In this 
paper, it is proposed to use the R-squared (R2) measure, 
since it is the natural alternative to F and its values are 
already constrained, without depending on the number of 
observations or degrees of freedom of the linear 
regression. 
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In this paper, two other simpler methods are also proposed: 
(i) random selection of sentinel meters and (ii) selection of 
sentinels by voltage level (V). For the second method (ii), 
we calculate the average voltage of the candidate meters, 
and we select (and eliminate from the list of candidates) 
the one with the voltage closest to the median, the one with 
the maximum voltage, and the one with the minimum 
voltage consecutively. This loop will be interrupted 
depending on the number of sentinels we want to select. 
In order to compare the presented methods, the following 
methodology is proposed: 
 
1. The time series with 15-minute voltage measurements 

of 32 monophasic SM for a period of approximately 
two years have been used. 

2. The selection of 1 to 5 sentinels is proposed 
consecutively. For the random method, 20 random 
subsets are selected for each number of sentinels. 

3. Data are divided into train-tests with a 90-10 ratio. 
4. Each sentinel selection method is applied on the train 

set. After that, 10 CNN are trained for each case. 
5. Predictions are made on the test set and quality is 

measured with the mean absolute error (MAE). The 
median of the 10 predictions is calculated. In the 
random case, it is also necessary to compute the 
median of the 20 subsets. 
 

The use of the MAE error measure is proposed since, in 
general, traditional error measures, such as mean absolute 
percentage error (MAPE), cannot reasonably quantify 
individual load forecasting performance. Some papers 
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already propose the use of the MAE or modifications of 
the MAPE [13] [14]. 
 

 
Figure 1: Median MAE over the test set for the predictions 
corresponding to the 10 CNN for each number of sentinel 
smart meters and method. 
 
As Figure 1 shows, the R2CD method achieves the best 
results, followed by the R2CQ and V methods, improving 
considerably with respect to the original methods found in 
the literature (FCD, FCQ). Therefore, the methods 
proposed have turned out to be successful, thus providing 
new methodologies for feature selection (sentinel smart 
meter selection in this study). 
 
Note that the median magnitude of the MAE over all 
predictions of all target variables is less than 0.9V, 
reaching less than 0.675V in the best case. It is also 
important to highlight the consistency of the results, 
having trained 50 CNN for each method, except for the 
random method, where 1000 have been trained, adding up 
to 1250-trained and tested neural networks. 
 
It is worth mentioning that the number of target variables 
changes for each number of sentinels, i.e., for the case of 
1 sentinel, the voltage is inferred for the other 31 meters, 
for the case of 2 the other 30, etc. Therefore, the median is 
calculated on a set of MAEs of different size for each case. 
This makes the comparison not entirely objective, but 
illustrative. 

IMPACT OF EXTERNAL VARIABLES 
The objective is to assess the impact of variables external 
to the smart meters on the model, for this purpose, 
measurements of the corresponding feeder at the head-end 
TS and meteorological (MET) data have been used. 
 
The possible influence of the TS feeder data seems 
obvious; in the case of weather data, it may help the model 
to anticipate the influence of appliances such as heating, 
ventilation and air conditioning (HVAC). In this TS there 
is no influence of EV, DG, etc. 

Since data must coincide in time, the available dataset has 
been reduced to one year. As a result, the quality of the 
predictions worsens; however, they are still sufficient to 
compare the relative impact. 
 
The external variables used are: (TS) head-end voltage and 
current and (MET) temperature, wind, humidity, pressure, 
type of sky and whether the day was a holiday or not. 
 
Again, the selection from 1 to 5 sentinels consecutively has 
been iterated, it has been considered all possible 
combinations with external variables, training 10 CNN for 
each case, and the median MAE has been calculated. 

 
Figure 2: Median MAE over the test set for the predictions 
corresponding to the 10 CNN for each number of sentinel 
smart meters and used external variables. The bottom 
graph shows the zoom on the two best curves. 

As shown in Figure 2, introducing MET data significantly 
worsens the results. This is mainly due to two factors: (i) 
the available data had a frequency of 30 minutes and was 
interpolated to 15 minutes and (ii) the data corresponds to 
a weather station at a distance of more than 5km from the 
TS. Therefore, we are putting noise into the model. As can 
be observed in the bottom graph, including the feeder data 
improves the predictions. 
 
Therefore, the following (sent + TS) is postulated as the 
best methodology: (i) select the sentinel meters using the 
R2CD method and (ii) combine the data from these 
sentinels and the voltage and current at the TS to generate 
a neural network-based model capable of estimating the 
voltage of the remaining meters. 
 
MAIN TESTS 
 
In this section, sent + TS methodology will be put into 
practice with 5 sentinel smart meters. For this purpose, 
three different groups of sentinel smart meters belonging 
to different phases (R, S, and T) have been selected. 
Groups 1, 2 and 3 consist of 26, 24 and 32 monophasic 
meters respectively. 
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The following steps have been followed: (i) first, data has 
been separated into train-test with a 90-10 ratio, (ii) on the 
train set, the R2CD method is applied to select the 5 
sentinels, (iii) then the neural network is trained, (iv) 
finally the voltage of the unselected meters is predicted 
over the test set and the MAE is measured. 
 
The nature of the method lies in exploiting the similarity 
between groups of monophasic consumers belonging to 
the same feeder and phase [15]. CNN receives as input a 
vector of size 7 (the voltage of the 5 sentinels plus the 2 
header values –current and voltage- at instant t), and 
returns as output a vector of size r (the voltage at instant t 
for the rest of the meters: sizes 21, 19 and 27 for groups 1, 
2 and 3 respectively). Figure 4 shows the process 
schematically for group 3. 
 

 
 
Figure 3: Schematic representation of the used CNN 
architecture, specifically for case 3 (27 target variables). 

Given that predictions are made for multiple users, it is not 
feasible to study the forecasts one by one; however, a 
simple way to assess the results is to analyze the 
distribution of the errors. 
 

 

Figure 4: Distribution of all errors (left) and distribution 
of average error per smart meter (right). 

The blue, orange and green curves represent the 
distribution of errors for groups of 21, 19 and 27 meters 
respectively. In the left chart of Figure 4, we can see how 
the distribution of all the errors for the three groups follow 
chi-square distributions, with most of the errors 
concentrated between 0V and 1V. 
 

However, the chart on the right shows how the 
distributions of the mean error per user follow a shape 
more similar to the normal distribution. This makes sense, 
since, according to the central limit theorem, the greater 
the number of independent random variables combined, 
the closer to a normal distribution. Group 2 appears to have 
a somewhat different distribution, more similar to a 
bimodal one. 
 
Using the Mann-Whitney U null hypothesis test between 
the distribution of errors of the groups one-to-one, it has 
been verified with 99% confidence that the average errors 
per user distribution of group 2 follows a significantly 
different distribution from groups 1 and 3. 
   
Table 1: Mann-Whitney U Test one-to-one p-values 

 Groups 1-2 Groups 2-3 Groups 1-3 
p-value 7.34x10-6 2.67x10-6 0.37 

 
The main reason is that the predictions for 3 of the 19 
meters of group 2 is significantly worse. However, the fact 
that the group 2 is smaller also has an impact, as stated in 
[16], where the authors claim that the accuracy of 
predictions improves as the group size increases. 
 
In any case, these are good results, with most errors 
concentrated in 0-1V and with average error per user 
contained in 0.5-1V. It should be noted that in some cases 
even the uncertainty range of smart meters measurements 
is higher. Finally, for illustrative purposes, Figure 5 
depicts one of the best predictions obtained for a consumer 
of group 1. 
 

 
Figure 5: Prediction on a consumer of group 1. 

CONCLUSION 
The mRMR methods with the necessary adaptations (R2CD 
and R2CQ) are postulated as the best for the selection of 
guard meters. Convolutional neural networks are able to 
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efficiently infer the associations between sentinel meters 
and feeders with respect to the rest of the consumers. 

FUTURE WORK 
An open line of research would be to use the connection 
hierarchy of the power grid, which has already been used 
for distribution load forecasting [17], to exploit the 
selection of sentinel meters. The association between 
sentinel selection method and CNN model improvement 
remains to be studied. Finding the cut-off point in the 
number of sentinels that contribute significantly to the 
CNN model can be critical. Another crucial aspect, 
outliers, remains to be studied. The usefulness of the model 
may be questioned if the errors are concentrated in extreme 
voltage values, which are, in short, where flexibility 
decisions have more weight. To this end, it is proposed to 
combine this model with a time series classification model 
capable of predicting future outliers. Work is currently in 
progress. 
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